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These are the people involved in our work for DOE on diesel fuel reformulation

under the overall guidance of Barry McNutt. Jerry Hadder is in the audience today.

I&IIT Mciﬁsdﬁlms had planned to make a presentation today, but was unable to attend
¢ workshop.



= Important that any decision to reformulate diesel
fuel be based on:

» Accurate assessment of the associated refinery costs
and fuel supply reliability problems

» Reliable assessment of emission benefits so that
predicted benefits are actually achieved in the field

=Essential pre-requisite is definitive determination
of which variables influence emissions and by
how much.

From the DOE perspective, it is important that any decision to reformulate diesel
fuel be based on:

o An accurate assessment of the refinery costs associated with reformulation and
its impact on fuel supply reliability.

. ol dA reliable assessment of emission benefits that actually will be achieved in the
ield.

It is the latter of these two points that we will address today.

An essential prerequisite to achievin, reliabi‘gg in the emissions analysis is having
a definitive assessment of the variables that influence emissions. If we lack this,
there can be no reliable basis for predicting the effects of varying fuel formulation
and efforts to implement fuel reformulation may go astray.



= Important contribution by EPA in compiling and
reconciling the existing test data in database

=Major effort to correlate fuel properties to
emissions using a complex methodology for
variable selection and estimation

mEnd result is not very satisfying —e.g., missing
natural cetane in NOx model, uncertain impact of
additized vs. natural cetane

s We believe reliance on inter-related predictors is
at heart of problem; better methods are available

Our comments are summarized in this slide. To begin with, EPA has made a very
important contribution to this area by the work done in compiling and reconciling
the test data that had been previously published. Without this, it has been very
difficult to look for a consensus in the test results, and the database will
undoubtedly benefit all interested parties.

EPA has made amajor effort, in a relatively short timeframe, to understand in detail
the correlations between fuel properties and emissions. The methodology for model
building is complex, both in the number of individual tems that were considered
and how parameters are selected and estimated.

In in the end, however, we find some aspects of the model results to be much less
than satisfying — for example, in the exclusion of natural cetane from the NOx
model and the questions regarding the relative mpact of natural and additized
cetane.

We believe these problems - in identifying the influential variables and estimating

their effects -- stem at least in part from the reliance on inter-related predictors. We
have been advocating a different approach called "eigenfuels" as amean of dealing

with these problems directly.



» Interdependencies in EPA data set
» Identification of fuel variables influencing emissions
» Model reliability as a predictive tool

» Emission changes predicted from reformulating
commercial fuels

» Issue of bias in eigenfuel models
» Conclusions

» Addendum: Brief Introduction to Eigenfuels

T hope to cover these points in today's 1ﬁresentation. I know that many of you are
alr% familiar with at least some of the eigenfuel work. An addendum on
eigenfuels has been included for those of you who have not seen that work. We
will be happy to get you more information on eigenfuels, if you would like.
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Interdependencies in EPA Data Set
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The diesel emissions data set is strongly affected by relationships among the
individual fuel properties. As an example, this chart shows the R-squared statistic
that is obtamed when each property is treated as a response variable and regressed
agamst all other properties.

You can see that only cetane difference, oxygen content and (surprisingly) sulfur
content are relatively independent of the other properties. Natural cetane -
distinctive in being a measure of ignition properties and related to physical and
chemical factors -- can be largely explained as a function of the other groperties.
In fact, five of these properties — natural cetane, total aromatics, specific gravity,
T10 and T50 -- can be more than 70 percent explained by the other 8 properties.

This situation gets much worse in the actual model building because both linear and
quadratic terms were considered for 3 of the properties. Over the non-negative
range of this data, the linear and quadratic temms have correlations on the order of
0.95 with each other. This means that 98 or 99 percent of the terms for natural
cetaglgi cetane difference, and total aromatics can be explained by some other
variable.

It should not be a real surprise that the analysis will have trouble distinguishing
which of these properties have an effect on emissions and what subset 1s best used



“The condition number of a matrix measures the
sensitivity of the solution of linear equations to
errors in the data. It gives an indication of the
accuracy of the results from matrix inversion ...”

“The usual rule of thumb is that the exponent on the
condition number, logl0(cond(X)), indicates the
number of decimal places that the computer can lose
to roundofT errors from Gaussian elimination.”

— SYSTAT manual

The EPA analysis concluded its dataset was not materially affected by multi-

collinearity, because the overall condition number was 5. We view the condition

number (or condition index, its square root) as primarily ameasure of the

computational difficulty faced in the solution of linear equations and the resulting

]laolgz ogaptzrlecision. We agree that computational pathology is not a concem in the
set.

However, we do not believe that use of condition number offers an adequate guard
against the problems introduced by interdependencies. In fact, any dataset (short of
an orthogonal one) has some degree of aliasing among variables and, therefore,
S(:rnigb <liegree of difficulty n identifying unique contributions to the response

\ €.

Our main target for the eigenfuel approach actually is NOT the set of problems that
are computationally pathological - 1.e., situations where the computations will lose
precision.

Rather, we are targeting the 111)roblem that the predictors are inter-related to such an
extent that the analysis will have trouble unraveling their relative importance and
individual contributions.



Effect of Variable Selection on Regression
Coefficient
Before After
Selection Selection

Fuel Property Coeff t Coeff t

Nat Cetane -0.0077 0.58

Nat Cetane”2 -0.0042 0.31

Cet Diff -0.0289 6.15* -0.0273 5.76%

Cet Diff*2 -0.0127 2.78% 0.0122 2.62%

Aromatics 0.0324 5.24% 0.0248 10.6* <--

Aromatics”2 -0.0098 1.81

Spec Gravity 0.0106 3.20%* 0.0203 8.61* <--

Oxygen Content 0.0053 3.68* 0.0055 3.74%*

T10 0.0104 4.52% 0.0103 4.82*

T50 -0.0104 3.05%* -0.0173 7.57* <--

T90 0.0021 0.95

Sulfur -0.0021 1.43

Let me use an example from the McAdams 1Eaper, which will be distributed later, to
illustrate the effect of variable selection on the values estimated for the regression
coeflicients in an environment of inter-related predictors. The data here are for
technology group T and have been adjusted to remove the mean emissions level for
each engine before regressing on fuel properties.

Here is an ordinary regression in which all 12 of the fuel property variables have
been included. As is usually done, the variables satisfying the 0.05 significance
level are retained; these are the ones that have been starred. All other tems are
rejected. In this case, 7 predictors are retained and 5 are rejected.

I call your attention to three of the retained variables — aromatics, specific gravity,
and T30 -- which are 3 of the 4 variables included in the EPA Unified NOx model.
Their coefficients change appreciably when the model is re-estimated with the 7
variables, and they also appear to be more significant in the subset model than in
the fullmodel. Understanding why this happens will tell us a lot about the
interpretation and reliability of models based on these variables.



Aromatics Coefficent (Full Model): 0.0324
+ contributions from

Natural Cetane 0.0016

Natural Cetane”2 0.0007

Aromatics”*2 -0.0103

T90 0.0005

Sulfur content -0.0001

= 0.0248

Aromatics Coefficient (Subset Model) 0.0248

There is a way to decompose the coefficients estimated for a subset model into: (1)
the part that originates with each variable retained in the model; and (2) the part(s)
that are "picked up" from other, excluded variables with which the retained
variables are aliased. The method involves computation of the "alias" or "bias"
matrix. This is discussed further in the McAdams paper.

When applied to the coefficient estimated for aromatics content in the subset model,
we find that the temm includes contributions from five other variables. The largest
aliased contribution is from the quadratic term in aromatics content, which has a
high correlation to the linear term. But other variables, including natural cetane,
T90 and sulfur content also contribute.



Spec Grav Coefficent (Full Model): 0.0106
+ contributions from

Natural Cetane 0.0058

Natural Cetane”2 0.0034

Aromatics*2 0.0013

T90 -0.0004

Sulfur content -0.0004

= 0.0203

Spec Grav Coefficient (Subset Model) 0.0203

We see a second example here for specific gravity. Its coefficient nearly doubles
between the full and subset regressions. The reason 1s that it predominantly picks
up the predictive contributions of the natural cetane variables (linear and quadratic
terms). Other excluded variables make smaller contributions. What we originally
thought was the effect of density, is now aliased to include the effects of natural
cetane and its square.

This comes about because the predictors are related to each other. The subset
model really includes contributions from all the variables, whether those
contributions are separately identified or not, and the variables included in the
model stand for more than just themselves.

Further, the coefficients in the subset model may be said to be "biased" relative to
the fullmodel. This bias will be small only when the terms excluded have
negligible effect on the response variable. The bias will be large whenever the
model excludes, for any reason, aliased temms that carry an appreciable effect on the
response.



Indentlfymg Inﬂuentlal Varlables




= 10 technology groups showing common response
to fuels for NOx, PM, HC in Unified Model
(dominated by T and F groups)

=906 emission tests out of 1315 in database

= ]2 fuel property variables (9 properties + 3
quadratic tenms)

=NOx and PM

mOLS estimation, with controls for individual
engine effects, but not engines x fuels

Our comments are largely focused on the effect of the analysis methodology. We have used a
consistent subset of the data and selection of variables throughout the analysis we present here, so
that comparisons are not influenced by differences in data.

'The data subset covers the 10 technology groups that EPA found to share a common response to
dﬁlagsb across pollutants in the Unified Model. This amounts to just under 70 percent of the whole
ase.

We have also focused on the 12 fuel variables used by EPA -- nine different properties and three
quadratic terms -- and just NOx and PM. The presentation shows results for NOx only.

The models are estimated using ordinary least squares (OLS) with controls for the effect of
mdividual engines on emissions. We have not attempted to estimate models with the much larger
number of controls for engines x fuels (up to 41 engines x 9 properties in this data subset).

The models presented here do not necessarily represent a judgement of what is the "best model"
for DOE purposes. In particular, we need to fiV@ consideration to a wider range of non-linear and
gli%l-ﬁlel nteraction terms. We also need to decide how to account for technology group

erences.



All Possible log(NOx) Regressmns

Fuels-related R-Squared
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There are 4095 different regressions that can be formed from 12 fuel variables; each
regression also contains controls for individual engine effects. In this mstance at
least, it 1s possible to estimate each of these models and then select the 711 in which
all included fuel temms are indicated to be statistically significant at the 0.05 level.

The "fuels-related" R-squared shown in the figure is the R-squared of the fuel
variables based on the SS remaining once the explanatory power of the engine
control tenms has been removed.

The sharp rise to the right at model 664 is the first entry of natural cetane as a
variable. By itself as the ongxﬁJel variable, natural cetane produces a fuels-related
R-squared of 0.42 for log(I\t

The curve of increasing R-squared bends over at about model 620 and then begins a
slow increase to its maximum of 0.745.

All of the interesting action takes place at the left, so let's zoom in closer.



Models with all terms statistically significant
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First, there is not much to choose from among the four models that are highlighted, as long as our
tti(l)cuf;r is 'OgIlll R-squared. The highest R-squared is 0.745 for model M-0 and the lowest is 0.723 at
e Tar rignt.

M-0. This is the "best model" possible using the 12 variables, in that it achieves the highest R-
squared among the models that have statistically significant coefficients. It includes 9 fuel

property temms.

M-1. This is actually the "best model" found using stepwise regression. It is model number 2
and contains 8 fuel terms. This illustrates the caution often given to stepwise regression -- the
search process will not necessarily find the "best" model.

M-2. EPA's Unified Model was estimated by a method that includes controls for engine x fuel
effects. One aspect of this is that the engine x fuel controls "use up" a number of degrees of
freedom. M-2 1s the "best model" found by stepwise regression -- among models with engine
controls and fuel effect terms, but not interactions -- when the degrees of freedom are reduced by
the corresponding amount by deleting data. This is model number 7 and contains 8 terms.

M-3. This is NOT an outcome of stepwise regression, but merely the 4-term model containin,
EPA's choice of variables in the Unified NOx model (cetane difference, total aromatics, specific
gravity, and T50). It has been re-estimated using the dataset with reduced degrees of freedom.

There are other factors, which we cannot simulate here, that contribute in EPA's analysis to the
difference between models M-2 and M-3. Those are: the inclusion of engine x fuel mteraction

tarima and the 11ca AF a Mived Fffart mmndal calviad tyr an 1farativa mavinn i 1hh-alibhand v+vathad



Number of terms in log(NOx) Regressions
o Models with all terms statistically significant
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This chart shows that the number of fuel terms can vary anywhere from a low of 4
to amaximum of 9 among the 100 best models -- with almost no difference in R-

squared.
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Pethaps more to the point on variable selection, this chart shows the frequency with
which the 12 fuel ﬂ;;roperty variables are included in the 100 bestmodels. We
certanely believe that cetane difference and total aromatics are important variables,
because they are included in all but a couple of models.

The case s a little less clear for other variables. For example, cetane difference /2,
spectfic gravity, T90, and sulfur are contained in more than half of the models,
while four other variables (natural cetane, natural cetane™2, T10, and T50) are
mncluded in a large minority of the models.

The problem we have with stepwise(;g‘grle variable selection using inter-related
predictors is the large number of "good" models you can find that differ in the
number and selection of fuel temms. There is little reason to prefer one of these over
another based on R-square. The absence of a variable from the model can be due to
the fact that its effects are accounted for by other variables present in the model, and
not because the variable has no effect. Relatively small differences in the data can
lead the analysis to select a different model with a different set of predictors.

The eigenfuel method is a way to deal directly with the problem of aliasing, its
efiect on variable selection, and the biasing impact on coefficient estimates. We
believe that eigenvectors are the only approach capable of providing an



Rellablllty of Models as Predlctlve Tools




Predictions of Stepwise and Eigenfuel
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This chart shows us where the eigenfuel model would fall in the range of stepwise
models. The eigenfuel model for log(NOx) contains a total of 8 terms that are
statistically significant at the 0.05 level. It is estimated with controls for engine
effects, but not engine x fuel effects. Its fuels-related R-square places it at position
10 on the R-square curve for the stepwise models. Its 8 eigenvectors contain, of
course, all twelve fuel variables.

We can say that there s little basis to prefer any one of these five models --
steﬁ)wise or eigenfuel -- based on R-squared. But, R-squared measures only how
well the model confomms to the data in the dataset, and it does not assure good
prediction except for these points.

We will see next that this situation changes when we examine other datasets. A
useful teminology is that the data set used to estimate the model is the "training"
data set, and other data sets to which the model is applied are "extension" or "test"
data sets. Good predictive ability refers to how successful the model is in making
predictions for cases that are not contained in the "training" data set. That is what
we mean by "extension".



=Monte Carlo simulation comparing predictions to
an assumed “true’” emissions response

»Three different simulations to generate data with
varying correlation characteristics

sModels based on inter-related predictors perform
well as long as the relationships do not change in

new data
= Predictive ability for the eigenfuel model is more
robust

We have looked at the gredictive ability of these models when applied to extension
data sets using Monte Carlo simulations. Basically, we assumed a "true" emissions
response, generated synthetic data with different degrees of correlation among the

fuel properties, and then determined how well the several models performed m
making predictions.

Three different simulations were done:

o Series 1: synthetic data having correlations among fuel properties that are very
similar to those found in the EPA data set

o Series 2: synthetic data created to have different correlations among properties
than those found in the EPA data set

o Series 3: synthetic data in which the fuel properties are completely independent



= The models all perform equally Median Correlation Coefficient
well on the EPA data set 0.8

» The models also perform equally |
well when new data retains the
same correlation structure

= When the correlations change,
models based on inter-related
variables predict less accurately
than before

» The eigenfuel model is less _ L L L
affected by changes in the Series 1 Series2 Series 3
correlations

¥ Eigenfuel M-1

M-2 [] m3

Here, we see the overall predictive ability of the 4 models summarized in terms of the median
correlation coefficient between the predicted and "true" emissions response. We started with the
four models performing equally well on the EPA data set. We see that:

0 The four models also perform equally well on new data, when that data retains the same
correlation structure

o When the correlations change, the stepwise models predict less accurately than before

o The eigenfuel model is less affected by changes in the correlations and is overall a more
robust basis for prediction

Basically, there is no way to avoid aliasing effects when working with correlated predictors. Any
model will, to some extent at least, "tune" the coefficients to match the aliasing present in the data
set. This "tuning" will falter whenever the aliasing in new data is different.

The eigenfuel model attacks this problem by eliminating the aliasing at the outset. Its coefficients
are estimated in an orthogonal environment and are NOT "tuned" to any particular aliasing. It
therefore predicts well in a wider range of environments.



»NOx predictions from eigenfuel model and EPA
Unified Model

mBased on hypothetical scenarios for varying the
characteristic features of commercial diesel fuels

= Substantial differences for NOx highlight areas of
potential concem for real world application of
model

»Greater differences occur in PM predictions, but
the variable list is not completely the same

We have seen that the predictive ability of regressions models based on correlated
predictors can deteriorate when gglied to new data, while the predictive ability of
the eigenfuel model is less affected.

Let us look at this issue in a different way b aring emission predictions of the
eigenfuel model and EPA's Unified Model for different hypothetical changes in
diesel fuel characteristics. We will define the hypothetical fuel changes based on
an analysis of the features that are characteristic of commercial diesels fuels. This
1S, In a sense, the acid test since what we care about is how much emission
reduction we get from reformulating commercial fuels.

We cannot say that one model is right and the other 1s wrong, but we should be
concemed if we find them to give substantially different predictions. We will base
the corr;%arison only on NOx emissions, where the two models considered the same
12 variables and the only difference is the methodology. There are actually greater
differences in the emission predictions for PM, but in that case the EPA model
considers an interactive term for natural cetane x cetane difference that was not
available to the eigenfuel model.



Summary of NOx Emission Predictions
Eigenfuels  EPA Unified

Aromatics 33->10%
(vector basis)

o Mode 1 -9.1% -9.5%

o Mode 2 -8.5% -12.5%

oMode 3 -9.5% -10.7%
Additized Cetane

+ 10 numbers -3.5% -2.7%
Oxygen Content

+ 4 percent +2.0% none

Commercial diesel fuels appear to vary in ways not fully represented in the EPA experimental
data set. In particular, from an analytical perspective, there are 3 characteristically different ways
(or modes) in which aromatics content can be reduced. These are defined by the differing
component classes that are substituted for aromatics, each with its own effects on natural cetane,
density and other properties. In comparison, there is only a single mode of aromatics variation
found in the experimental fuels of the EPA database. These "modes" of aromatics reduction
mvolve changes in a wide range of properties that are associated with aromatics, which is what
we mean by "vector change".

The eigenfuel and EPA models generally agree on the NOx impact of reducing aromatics for
Mode 1, but show disagreements forModes 2 and 3. The léa;%l%t disagreement is for Mode 2,
where EPA's estimate 15 nearly half again as large. The eigenfuel model estimates about a 9
percent reduction in NOx when going from 33 to 10 percent aromatics, regardless of how this is
accomplished. The EPA Unified Model gives differing values depending on mode and would
appear to estimate a somewhat greater overall effect of aromatics reduction.

The models disagree on the magnitude of the additized cetane effect, with the eigenfuel model
estimating a one-third greater reduction in NOx emissions than the EPA Unified Model. The
models also disagree on whether oxygen content adversely impacts NOx. The eigenfuel model
Saa}rlisagiat fit dI(\)IeS;( while the EPA model says not, since it omits oxygen content as a predictive

v e for :

There are greater differences in the model predictions for PM, due both to differences in the
methodology and to differences in the list of predictive variables.



Issue of Blas in Elgenfuel Models
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mBias is a property of the estimation procedure

=OLS will give unbiased estimates of the
coefficients associated with eigenfuels used as X
variables

mEigenfuel coefficients are unaffected by aliasing
and invariant with selection of terms

mEigenfuels are not intended as an “end around”
means to estimate fuel property terms

The EPA report identifies PCR, the basis for the eigenfuel methodology, as a statistical
methodology that produces biased estimates for fuel %ropeny coefficients and, therefore, does not
offer a complete solution to the problems introduced by correlation.

Bias is really a property of the estimation procedure. OLS will give unbiased estimates of the
coefficients associated with the X-space variables, regardless of how the X-space is defined.

‘When the X-space consists of the eigenfuel description of fuels, the coefficients are unbiased
estimates of the response associated with the eigenvectors. In addition, the coefficients have the
desirable pr(t)ﬁ)erty of beinﬁﬁaﬂ'ected by aliasing. Therefore, the the coefficient estimates are
nvariant with respect to changes in the number of terms retained.

Eigenfuels are not intended as an "end round" means of estimating coefficients for the fuel
property temms. Rather, we believe they are the preferrred choice of variable, because they are the
only orthogonal basis that can be defined for the data set at hand. The purpose of PCR+ in our
work is to estimate the response associated with the eigenvectors.



= Paradigm #1: Eigenfuels provide a cogent,
concise, and natural basis to describe fuels

» Paradigm #2: The effect of fuels on emissions is
best measured in temms of eigenfuels.

= Approach:
» Option to use representative fuels in engine testing

» Develop regression models in E-space

» Transform to P-space if/when needed to display or
apply results in calculations

Here is the DOE paradigm for how fuels research should be conducted. We believe
that eigenfuels provide a preferred basis for describing fuels and the emissions
response to changing fuel characteristics.

Because of this paradigm, we advocate the following:

o The option of using commercially representative fuels in engine testing,
without the artificial attempt to make fuel properties vary in unnatural ways.

o Conduct the emissions analysis in E-space, meaning using eigenvector
descriptions of fuels in place of the individual properties. You should be able to use
eigenfuels any where you currently use fuel properties.

o Transform your results to P-space, meaning ﬁle;f)ro erties, as a convenience, if
and when needed to display or apply the results in calculations. Caution is advised
in the interpretation of the transformed equation, however.



Conclusions and Implications




=Does not provide definitive guidance on fuel
properties influencing emissions

[ ikely to retain too few terms due to aliasing of
variables and consequent inflation of standard

errors
mCoefTicients are “tuned” to the aliasing present in
the data set

=Models that predict well for observations in the
data set can not be counted on for accurate
predictions elsewhere

We are concemned that the current state of the art in modeling the effect of fuels on emissions falls
short of the standard that needs to be met for the development of public policy in this area.

The stepwise regression methodoloézl using inter-related variables is likely to fail the test of
providing defimtive guidance to refiners on the ﬁm}&rfoperties that must be modified to reduce
emissions. Too manff different regression models, differing in the selection of predictor
Vatiablie;sl;lare possible as outcomes of the process when the correlation among variables is
appreciable.

The presence of correlations among the predictor variables also has the well-understood effect of
% the standard errors of the estimated coefficients. When variable selection is based
primarily on the t-test of statistical significance, the increased standard errors will often lead to
mcluding too few terms in the final model.

The coefficients estimated for regression models will be biased as a result of aliasing when too
few predictive terms are retained. In this case, the coefficients ig(lﬁlicitly incorporate effects
associated with other variables not present in the model. The predictive ability of such models
can deteriorate when applied to data having different correlation characteristics.

Modeling of fuel effects on emissions should be based on orthogonal or independent predictors to
avoid the problems listed above.



indicative of problems in identifying the true
makeup of predictors

mCoefTicients for total aromatics and specific
gravity are affected by aliasing

mVariables in NOx model appear to be surrogates
for vector aromatics effect of Eigenfuel 1.

= Unified Models do not fully describe the effect of
fuels on emissions and are not presently adequate
as basis for reformulation.

The absence of natural cetane in EPA's unified model for NOx is, we believe,
inrgifative of the difficulties in variable selection when operating with inter-related
predictors.

We conclude that the coefficients for aromatics content and specific %ravity are
affected by aliasing of these variables to natural cetane and other excluded terms.
These coeflicients are likely to give biased estimates of the effect of varying these
properties independently of other variables.

We interpret aromatics content and specific gravity as surrogate variables for the
largest fuel effect identified by the eigenfuel analysis -- that is;)g(i?envector 1
representing the reduction of aromatics content with its associated increase in
natural cetane and decrease in specific gravity.

We expect that the stepwise estimation process has resulted in retaining too few
terms n the Unified NOx and PM model to fully represent the effect of fuels. If so,
the coefficient estimates are affected by aliasing and are not adequate at present to
provide a sound basis for diesel fuel reformulation.



= Selected issues on variable specifications —e.g.,
additized cetane

mMethodology for evaluating non-linear and
interactive terms

= Select final emissions models for use in DOE
refinery modeling on fuel reformulation

= Additional DOE/ORNL publications in late 2001
or 2002.

This chart summarizes the directions our work on eigenfuels is likely to take. There
are some methodological issues we need to address, mcluding how best to specify
some variables like additized cetane and to evaluate a full range of non-linear and
interactive terms. The issue on additized cetane is whether it 1s more effective to
include total cetane in place of cetane difference and allow the eigenvector
decomposition to sort out the difference between natural and total cetane.

Having done this, our next major milestone is to select a final emissions model for
use in DOE refinery analyses related to diesel fuel reformulation.

We expect to release additional publications on this work in late 2001 or early 2002.



Brief Introduction to Eigenfuel Methodology




= Vector variables defined by Variance among Fuels (7o)
Principal Components Analysis S
(PCA) »1
= Linear combinations of individual ~ 25| -
fuel properties 20 I L
= Mathematically independent 15 1 H =
= Statistically uncorrelated 10 -
= Can be related to refinery processes 5 [ 1 11 [TT2
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As summarized in this chart, eigenfuels are the eigenvectors defined by the
Principal Components Analysis (PCA) decomposition of the correlation matrix for
adata set. Each vector is expressed as a linear combination of the mdividual fuel
properties. They are defined by the PCA procedure to be mathematically
mndependent and statistically uncorrelated descriptors for fuels.

Eigenfuels provide an orthogonal partitioning of the variation among fuels. The bar
chart shows the variance associated with each of the eigenfuels in the EPA data set.
One-third of the variance is associated with the first eigenfuel feature, and one
quarter with the second. Onlly six features are needed to explain nearly 95 percent
of the differences among fuels. You can see how eigenfuels help identify the true
dimensionality of the problem.

We have termed them "eigenfuels" because the vectors we have seen in both
experimental and commercial fuels datasets are building blocks of fuels that have
ready interpretations in terms of refining and blending processes. Allowing some
time to retool one's thinking, it becomes as natural to describe fuels in terms of
eigenfuels as it 1s to use individual fuel properties.
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This slide shows gou graphically the composition of Eigenfuel 1. The vertical axis
gives the weight for each of the 12 fuel property variables in this vector. The dark
bars show you the terms that make the largest contributions to the vector.

We can "read" the vector as saying that an increase in natural cetane (X and X2
terms equallyg 1s associated with a decrease in total aromatics content (X and X2
terms equally) and a decrease in density, with smaller effects on other properties.
The property changes are ones that occur simultaneously whenever the amount of
this eigenfuel varies.

This is the feature that varies most in the experimental fuels found in the EPA data
set. A refinery-based interpretation would call this the "light cycle oil" vector.



1. Aromatics variation with natural cetane, density
2. Natural cetane variation independent of aromatics
3. Additized cetane (and associated properties)

4. Oxygen content (and associated properties)

5. Sulfur variation (and associated properties)
6. Slope of distillation curve

10-12: Nonlinear behavior for additized cetane, total
aromatics, natural cetane, respectively

Here are intelipretations for the major eigenfuels. The first five vectors are ones you
might logically expect to find in a data set developed to test for effects on
emissions. The sixth feature - the slope of the distillation curve -- seems related to
controlling flash and pour points to commercial specifications. Nonlinear behavior
for additized cetane, total aromatics, and natural cetane are represented in
eigenfuels 10, 11, and 12.

The "bottom line" to this slide is that eigenfuels offer a cogent and concise method
for describin%)ﬁlels that reveals how fuels have been formed and can be amuch
more natural basis than the individual properties.
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Real fuels can easily be expressed in temns of eigenfuels, and the coeffficients of that expression can then used
Earedlctnrs in regression analysis for NOx and PM emissions. In this example, effects related to individual engines
have first been removed from the data, leaving us with the effects of fuels and unexplained variation. The regression
is of the form log( emissions ) = f{ eigenfuels).

The vertical axis is the percent contribution of each eigenfuel to the fuels-related model SS. This contribution
depends on both strength (magnitude) of the e:gatmﬁle effect and how much each eigenfuel was varied in the test set.
A sréllall share here does not necessarily mean that an eigenfuel is unimportant, since it might vary much more in
another dataset.

We see that eigenfuel number 1 - the aromatics, natural cetane, and density vector - has the single largest effect on
both log(NOx) and log(PM). From the perspective of eigenfuels, the effects are related to the jomnt variation in
aromatics, natural cetane, and density. They cannot be ascribed to any one fuel property in isolation from the others.

ForNOx, we find 8 temms to be statistically significant: 1,2,3, 5,6, 9, 10, 11. After the aromatics vector, additized
cetane (3) is next most important, with cetane independent of aromatics (2), sulfur content (5), and non-linear
aromatics (11) making smaller and nearly equal contributions.

For PM, we find 7 terms to be statistically significant: 1,2,3,4, 5,8, 11. After the aramatics vector, additized cetane
(3) is next most important, followed by natural cetane independent of aromatics (2), oxygen content (4) and non-
linear aromatics (11).

Note also that the eigenfuel tems that are significant in e%la;ungNOx or PM emissions are not the same as the ones
most mportant for describing the variation among fuels. 1s an example of why one cannot prune the eigenvector

terms before the fact based only on what is important in describing fuels.



